Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
PLoS One ; 18(4): e0284020, 2023.
Article in English | MEDLINE | ID: covidwho-2279364

ABSTRACT

BACKGROUND: Although there have been many studies on antibody responses to SARS-CoV-2 in breast milk, very few have looked at the fate of these in the infant, and whether they are delivered to immunologically relevant sites in infants. METHODS: Mother/infant pairs (mothers who breast milk fed and who were SARS-CoV-2 vaccinated before or after delivery) were recruited for this cross-sectional study. Mother blood, mother breast milk, infant blood, infant nasal specimen, and infant stool was tested for IgA and IgG antibodies against SARS-CoV-2 spike trimer. RESULTS: Thirty-one mother/infant pairs were recruited. Breast milk fed infants acquired systemic anti-spike IgG antibodies only if their mothers were vaccinated antepartum (100% Antepartum; 0% Postpartum; P<0.0001). Breast milk fed infants acquired mucosal anti-spike IgG antibodies (in the nose) only if their mothers were vaccinated antepartum (89% Antepartum; 0% Postpartum; P<0.0001). None of the infants in either group had anti-spike IgA in the blood. Surprisingly, 33% of the infants whose mothers were vaccinated antepartum had high titer anti-spike IgA in the nose (33% Antepartum; 0% Postpartum; P = 0.03). Half-life of maternally transferred plasma IgG antibodies in the Antepartum infant cohort was ~70 days. CONCLUSION: Vaccination antepartum followed by breast milk feeding appears to be the best way to provide systemic and local anti-SARS-CoV-2 antibodies for infants. The presence of high titer SARS-CoV-2-specific IgA in the nose of infants points to the potential importance of breast milk feeding early in life for maternal transfer of mucosal IgA antibodies. Expectant mothers should consider becoming vaccinated antepartum and consider breast milk feeding for optimal transfer of systemic and mucosal antibodies to their infants.


Subject(s)
COVID-19 , Milk, Human , Infant , Female , Humans , Cross-Sectional Studies , COVID-19/prevention & control , SARS-CoV-2 , Breast Feeding , Antibodies, Viral , Immunoglobulin A , Immunoglobulin G
2.
Am J Pathol ; 2023 Mar 22.
Article in English | MEDLINE | ID: covidwho-2274189

ABSTRACT

Ophthalmic manifestations and tissue tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported in association with coronavirus disease 2019 (COVID-19), but the pathology and cellular localization of SARS-CoV-2 are not well characterized. The objective of this study was to evaluate macroscopic and microscopic changes and investigate cellular localization of SARS-CoV-2 across ocular tissues at autopsy. Ocular tissues were obtained from 25 patients with COVID-19 at autopsy. SARS-CoV-2 nucleocapsid gene RNA was previously quantified by droplet digital PCR from one eye. Herein, contralateral eyes from 21 patients were fixed in formalin and subject to histopathologic examination. Sections of the droplet digital PCR-positive eyes from four other patients were evaluated by in situ hybridization to determine the cellular localization of SARS-CoV-2 spike gene RNA. Histopathologic abnormalities, including cytoid bodies, vascular changes, and retinal edema, with minimal or no inflammation in ocular tissues were observed in all 21 cases evaluated. In situ hybridization localized SARS-CoV-2 RNA to neuronal cells of the retinal inner and outer layers, ganglion cells, corneal epithelia, scleral fibroblasts, and oligodendrocytes of the optic nerve. In conclusion, a range of common histopathologic alterations were identified within ocular tissue, and SARS-CoV-2 RNA was localized to multiple cell types. Further studies will be required to determine whether the alterations observed were caused by SARS-CoV-2 infection, the host immune response, and/or preexisting comorbidities.

4.
American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons ; 23(1):101-107, 2023.
Article in English | EuropePMC | ID: covidwho-2169601

ABSTRACT

Although the risk of SARS-CoV-2 transmission through lung transplantation from acutely infected donors is high, the risks of virus transmission and long-term lung allograft outcomes are not as well described when using pulmonary organs from COVID-19–recovered donors. We describe successful lung transplantation for a COVID-19–related lung injury using lungs from a COVID-19–recovered donor who was retrospectively found to have detectable genomic SARS-CoV-2 RNA in the lung tissue by multiple highly sensitive assays. However, SARS-CoV-2 subgenomic RNA (sgRNA), a marker of viral replication, was not detectable in the donor respiratory tissues. One year after lung transplantation, the recipient has a good functional status, walking 1 mile several times per week without the need for supplemental oxygen and without any evidence of donor-derived SARS-CoV-2 transmission. Our findings highlight the limitations of current clinical laboratory diagnostic assays in detecting the persistence of SARS-CoV-2 RNA in the lung tissue. The persistence of SARS-CoV-2 RNA in the donor tissue did not appear to represent active viral replication via sgRNA testing and, most importantly, did not negatively impact the allograft outcome in the first year after lung transplantation. sgRNA is easily performed and may be a useful assay for assessing viral infectivity in organs from donors with a recent infection.

5.
Nature ; 612(7941): 758-763, 2022 12.
Article in English | MEDLINE | ID: covidwho-2160240

ABSTRACT

Coronavirus disease 2019 (COVID-19) is known to cause multi-organ dysfunction1-3 during acute infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with some patients experiencing prolonged symptoms, termed post-acute sequelae of SARS-CoV-2 (refs. 4,5). However, the burden of infection outside the respiratory tract and time to viral clearance are not well characterized, particularly in the brain3,6-14. Here we carried out complete autopsies on 44 patients who died with COVID-19, with extensive sampling of the central nervous system in 11 of these patients, to map and quantify the distribution, replication and cell-type specificity of SARS-CoV-2 across the human body, including the brain, from acute infection to more than seven months following symptom onset. We show that SARS-CoV-2 is widely distributed, predominantly among patients who died with severe COVID-19, and that virus replication is present in multiple respiratory and non-respiratory tissues, including the brain, early in infection. Further, we detected persistent SARS-CoV-2 RNA in multiple anatomic sites, including throughout the brain, as late as 230 days following symptom onset in one case. Despite extensive distribution of SARS-CoV-2 RNA throughout the body, we observed little evidence of inflammation or direct viral cytopathology outside the respiratory tract. Our data indicate that in some patients SARS-CoV-2 can cause systemic infection and persist in the body for months.


Subject(s)
Autopsy , Brain , COVID-19 , Organ Specificity , SARS-CoV-2 , Humans , Brain/virology , COVID-19/virology , RNA, Viral/analysis , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Virus Replication , Time Factors , Respiratory System/pathology , Respiratory System/virology
7.
Clin Transl Immunology ; 11(5): e1391, 2022.
Article in English | MEDLINE | ID: covidwho-1819349

ABSTRACT

Objectives: Solid organ transplant recipients (SOTR) receiving post-transplant immunosuppression show increased COVID-19-related mortality. It is unclear whether an additional dose of COVID-19 vaccines can overcome the reduced immune responsiveness against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Methods: We analysed humoral immune responses against SARS-CoV-2 and its variants in 53 SOTR receiving SARS-CoV-2 vaccination. Results: Following the initial vaccination series, 60.3% of SOTR showed no measurable neutralisation and only 18.9% demonstrated neutralising activity of > 90%. More intensive immunosuppression, antimetabolites in particular, negatively impacted antiviral immunity. While absolute IgG levels were lower in SOTR than controls, antibody titres against microbial recall antigens were higher. By contrast, SOTR showed reduced vaccine-induced IgG/IgA antibody titres against SARS-CoV-2 and its delta variants and fewer linear B-cell epitopes, indicating reduced B-cell diversity. Importantly, a third vaccine dose led to an increase in anti-SARS-CoV-2 antibody titres and neutralising activity across alpha, beta and delta variants and to the induction of anti-SARS-CoV-2 CD4+ T cells in a subgroup of patients analysed. By contrast, we observed significantly lower antibody titres after the third dose with the omicron variant compared to the ancestral SARS-CoV-2 and the improvement in neutralising activity was much less pronounced than for all the other variants. Conclusion: Only a small subgroup of solid organ transplant recipients is able to generate functional antibodies after an initial vaccine series; however, an additional vaccine dose resulted in dramatically improved antibody responses against all SARS-CoV-2 variants except omicron where antibody responses and neutralising activity remained suboptimal.

8.
Front Immunol ; 12: 779026, 2021.
Article in English | MEDLINE | ID: covidwho-1581330

ABSTRACT

A 26-year-old otherwise healthy man died of fulminant myocarditis. Nasopharyngeal specimens collected premortem tested negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Histopathological evaluation of the heart showed myocardial necrosis surrounded by cytotoxic T-cells and tissue-repair macrophages. Myocardial T-cell receptor (TCR) sequencing revealed hyper-dominant clones with highly similar sequences to TCRs that are specific for SARS-CoV-2 epitopes. SARS-CoV-2 RNA was detected in the gut, supporting a diagnosis of multisystem inflammatory syndrome in adults (MIS-A). Molecular targets of MIS-associated inflammation are not known. Our data indicate that SARS-CoV-2 antigens selected high-frequency T-cell clones that mediated fatal myocarditis.


Subject(s)
COVID-19/complications , Myocarditis/pathology , Myocarditis/virology , Systemic Inflammatory Response Syndrome/pathology , T-Lymphocytes/immunology , Adult , COVID-19/immunology , COVID-19/pathology , Humans , Male , Myocarditis/immunology , RNA, Viral/analysis , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/immunology
9.
Transpl Infect Dis ; 24(2): e13774, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1571111

ABSTRACT

BACKGROUND: Solid organ transplant recipients (SOTR) have diminished humoral immune responses to COVID-19 vaccination and higher rates of COVID-19 vaccine breakthrough infection than the general population. Little is known about COVID-19 disease severity in SOTR with COVID-19 vaccine breakthrough infections. METHODS: Between 4/7/21 and 6/21/21, we requested case reports via the Emerging Infections Network (EIN) listserv of SARS-CoV-2 infection following COVID-19 vaccination in SOTR. Online data collection included patient demographics, dates of COVID-19 vaccine administration, and clinical data related to COVID-19. We performed a descriptive analysis of patient factors and evaluated variables contributing to critical disease or need for hospitalization. RESULTS: Sixty-six cases of SARS-CoV-2 infection after vaccination in SOTR were collected. COVID-19 occurred after the second vaccine dose in 52 (78.8%) cases, of which 43 (82.7%) occurred ≥14 days post-vaccination. There were six deaths, three occurring in fully vaccinated individuals (7.0%, n = 3/43). There was no difference in the percentage of patients who recovered from COVID-19 (70.7% vs. 72.2%, p = .90) among fully and partially vaccinated individuals. We did not identify any differences in hospitalization (60.5% vs. 55.6%, p = .72) or critical disease (20.9% vs. 33.3%, p = .30) among those who were fully versus partially vaccinated. CONCLUSIONS: SOTR vaccinated against COVID-19 can still develop severe, and even critical, COVID-19 disease. Two doses of mRNA COVID-19 vaccine may be insufficient to protect against severe disease and mortality in SOTR. Future studies to define correlates of protection in SOTR are needed.


Subject(s)
COVID-19 , Organ Transplantation , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Organ Transplantation/adverse effects , SARS-CoV-2 , Transplant Recipients , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL